DESIGN AND IMPLEMENTATION of Lattice-Based Cryptography

Tancrède Lepoint

École Normale Supérieure \& Université du Luxembourg Thèse CIFRE effectuée au sein de CryptoExperts

Soutenance de thèse de doctorat - 30 juin 2014

Outline

1. Introduction
2. Fully Homomorphic Encryption
3. Cryptographic Multilinear Maps
4. Conclusion

Outline

1. Introduction

2. Fully Homomorphic Encryption
3. Cryptographic Multilinear Maps
4. Conclusion

Cloud Computing

Program or application on

 connected server(s) rather than locally

Modelization

f is the service provided by the Cloud on your data m_{i}

Confidentiality of Your Data

1. Confidentiality of your data in the Cloud?

Confidentiality of Your Data

1. Confidentiality of your data in the Cloud?
2. Confidentiality of the channel?

Encryption

Encryption

Encryption

Encryption

But...
They need to share a secret key $\mathbb{C}=$

Key Exchange (Diffie-Hellman)

Key Exchange (Diffie-Hellman)

Key Exchange (Diffie-Hellman)

Key Exchange (Diffie-Hellman)

Contribution \#1: [CLT-C13]

- New construction of Multilinear Maps
- Extension of Bilinear Maps
- First implementations of:
- Multilinear Maps
- A 26-parties one-round key exchange

Contribution \#1: [CLT-C13]

- New construction of Multilinear Maps
- Extension of Bilinear Maps

Lots of exciting applications!!

- First implementations of:
- Multilinear Maps
- A 26-parties one-round key exchange

Only implemented for 2 and 3 parties!

Contribution \#1: [CLT-C13]

- New construction of Multilinear Maps
- Extension of Bilinear Maps
- First implementations of:
- Multilinear Maps
- A 26-parties one-round key exchange

Contribution \#1: [CLT-C13]

- New construction of Multilinear Maps
- Extension of Bilinear Maps
- First implementations of:
- Multilinear Maps
- A 26-parties one-round key exchange

Contribution \#1: [CLT-C13]

- New construction of Multilinear Maps
- Extension of Bilinear Maps
- First implementations of:
- Multilinear Maps
- A 26-parties one-round key exchange

Contribution \#1: [CLT-C13]

- New construction of Multilinear Maps
- Extension of Bilinear Maps
- First implementations of:
- Multilinear Maps
- A 26-parties one-round key exchange

Contribution \#1: [CLT-C13]

- New construction of Multilinear Maps
- Extension of Bilinear Maps
- First implementations of:
- Multilinear Maps
- A 26-parties one-round key exchange

Confidentiality of Your Data

- We assume communication with the Cloud is secure \checkmark

Confidentiality of Your Data

- We assume communication with the Cloud is secure \checkmark

Confidentiality w.r.t. The Cloud

The Cloud knows nothing about your data

- For confidentiality, we use encryption

Confidentiality w.r.t. The Cloud

For confidentiality, we use encryption

- Now... limited to storage/retrieval

Confidentiality w.r.t. The Cloud

- For confidentiality, we use encryption
- Now... limited to storage/retrieval
- This is not even what Dropbox/Google Drive/Microsoft OneDrive/Amazon S2/iCloud Drive/etc. are doing
- Allow access control and sharing, interaction with whole app universe, etc.

Fully Homomorphic Encryption

[RivestAdlemanDertouzos78]

Going beyond the storage/retrieval of encrypted data by permitting encrypted data to be operated on for interesting operations, in a public fashion?

- Enable unlimited computation on encrypted data (w.l.o.g. m_{i} 's are bits and f Boolean circuit)

Contribution \#2

- Theoretical improvements of the DGHV scheme
- Packing several plaintexts in one ciphertext [CCKLLTY-EC13]
- Adaptation of a technique to manage noise growth [CLT-PKC14]
- Exponential improvement!
- Fine analysis of the constraints to select concrete parameters
- Implementations of the schemes and benchmark on $f=$ AES

Outline

1. Introduction
2. Fully Homomorphic Encryption
3. Cryptographic Multilinear Maps
4. Conclusion

DGHV Scheme [vDGHV10]

- Public error-free element: $x_{0}=q_{0} \cdot p$
- Secret key sk=p

DGHV Scheme [vDGHV10]

- Public error-free element: $x_{0}=q_{0} \cdot p$
- Secret key sk=p
- Ciphertext for $m \in\{0,1\}$:

$$
c=q \cdot p+2 \cdot r+m
$$

where q large random, r small random

DGHV Scheme [vDGHV10]

- Public error-free element: $x_{0}=q_{0} \cdot p$
- Secret key sk=p
- Ciphertext for $m \in\{0,1\}$:

$$
c=q \cdot p+2 \cdot r+m
$$

where q large random, r small random

- Decryption of c :

$$
m=(c \bmod p) \bmod 2
$$

Homomorphic Properties

- How to Add and Multiply Encrypted Bits:
- Add/Mult two near-multiples of p gives a near-multiple of p
- $c_{1}=q_{1} \cdot p+2 \cdot r_{1}+m_{1}, \quad c_{2}=q_{2} \cdot p+2 \cdot r_{2}+m_{2}$
- $c_{1}+c_{2}=p \cdot\left(q_{1}+q_{2}\right)+\underbrace{2 \cdot\left(r_{1}+r_{2}\right)+m_{1}+m_{2}}_{\bmod 2 \rightarrow m_{1} \mathrm{XOR} m_{2}}$
$-c_{1} \cdot c_{2}=p \cdot\left(c_{2} q_{1}+c_{1} q_{2}-q_{1} q_{2}\right)+\underbrace{2 \cdot\left(2 r_{1} r_{2}+r_{2} m_{1}+r_{1} m_{2}\right)+m_{1} \cdot m_{2}}_{\bmod 2 \rightarrow m_{1} \mathrm{AND} m_{2}}$

Homomorphic Properties

- How to Add and Multiply Encrypted Bits:
- Add/Mult two near-multiples of p gives a near-multiple of p

$$
\begin{aligned}
& =c_{1}=q_{1} \cdot p+2 \cdot r_{1}+m_{1}, \quad c_{2}=q_{2} \cdot p+2 \cdot r_{2}+m_{2} \\
& =c_{1}+c_{2}=p \cdot\left(q_{1}+q_{2}\right)+\underbrace{2 \cdot\left(r_{1}+r_{2}\right)+m_{1}+m_{2}}_{\bmod 2 \rightarrow m_{1} \times \operatorname{XOR} m_{2}}
\end{aligned}
$$

$-c_{1} \cdot c_{2}=p \cdot\left(c_{2} q_{1}+c_{1} q_{2}-q_{1} q_{2}\right)+\underbrace{2 \cdot\left(2 r_{1} r_{2}+r_{2} m_{1}+r_{1} m_{2}\right)+m_{1} \cdot m_{2}}_{\bmod 2 \rightarrow m_{1} \mathrm{AND} m_{2}}$

Correctness for multiplicative depth of $L: \log _{2} p=\eta \approx 2^{L} \cdot(\rho+1)$

Our Contributions

1. New problem: Decisional Approximate-GCD problem [CCKLLTY-EC13]

- Proved equivalent to the computational AGCD problem of [vDGHV10] in [CLT-PKC14]
- Proofs are simpler!

Our Contributions

1. New problem: Decisional Approximate-GCD problem [CCKLLTY-EC13]

- Proved equivalent to the computational AGCD problem of [vDGHV10] in [CLT-PKC14]
- Proofs are simpler!

2. Batching: encrypt vectors of bits instead of single bits [CCKLLTY-EC13]

- Reduce asymptotic overhead per gate
- Useful for parallelization

Our Contributions

1. New problem: Decisional Approximate-GCD problem [CCKLLTY-EC13]

- Proved equivalent to the computational AGCD problem of [vDGHV10] in [CLT-PKC14]
- Proofs are simpler!

2. Batching: encrypt vectors of bits instead of single bits [CCKLLTY-EC13]

- Reduce asymptotic overhead per gate
- Useful for parallelization

3. Management of the noise growth

- Heuristic method modeling noise growth [LP13]
- Exponential improvement with scale-invariance technique [CLT-PKC14]

Our Contributions

1. New problem: Decisional Approximate-GCD problem [CCKLLTY-EC13]

- Proved equivalent to the computational AGCD problem of [vDGHV10] in [CLT-PKC14]
- Proofs are simpler!

2. Batching: encrypt vectors of bits instead of single bits [CCKLLTY-EC13]

- Reduce asymptotic overhead per gate
- Useful for parallelization

3. Management of the noise growth

- Heuristic method modeling noise growth [LP13]
- Exponential improvement with scale-invariance technique [CLT-PKC14]

4. Implementations

- Benchmark on AES circuit [CCKLLTY-EC13,CLT-PKC14]

Semantic Security of the Scheme

Consider

$$
D=\left\{q \cdot p+r: q \leftarrow\left[0, q_{0}\right), r \leftarrow\left[0,2^{\rho}\right)\right\}
$$

Security of the scheme based on:

(Error-Free) Decisional Approximate-GCD

Given $x_{0}=q_{0} \cdot p$ and polynomially many $x_{i} \in D$, decide whether z is uniformly generated in $\left[0, x_{0}\right)$ or in D

Semantic Security of the Scheme

Consider

$$
D=\left\{q \cdot p+r: q \leftarrow\left[0, q_{0}\right), r \leftarrow\left[0,2^{\rho}\right)\right\}
$$

Security of the scheme based on:

(Error-Free) Decisional Approximate-GCD

Given $x_{0}=q_{0} \cdot p$ and polynomially many $x_{i} \in D$, decide whether z is uniformly generated in $\left[0, x_{0}\right.$) or in D

Semantic security of the scheme:

- Recall that $c=q \cdot p+2 r+m$
- Since $\operatorname{gcd}\left(2, q_{0}\right)=1, c=2 \cdot(\underbrace{\left(q / 2 \bmod q_{0}\right) \cdot p+r}_{\text {indistinguishable from uniform } \bmod x_{0}})+m \bmod \left(q_{0} \cdot p\right)$

Semantic Security of the Scheme

Consider

$$
D=\left\{q \cdot p+r: q \leftarrow\left[0, q_{0}\right), r \leftarrow\left[0,2^{\rho}\right)\right\}
$$

Security of the scheme based on:

(Error-Free) Decisional Approximate-GCD

Given $x_{0}=q_{0} \cdot p$ and polynomially many $x_{i} \in D$, decide whether z is uniformly generated in $\left[0, x_{0}\right)$ or in D

Semantic security of the scheme:

- Recall that $c=q \cdot p+2 r+m$
- Since $\operatorname{gcd}\left(2, q_{0}\right)=1, c=2 \cdot(\underbrace{\left(q / 2 \bmod q_{0}\right) \cdot p+r})+m \bmod \left(q_{0} \cdot p\right)$ indistinguishable from uniform $\bmod x_{0}$
- Therefore ciphertext of m indistinguishable from uniform

Batching (1)

- In one ciphertext, encode ℓ plaintexts
- Addition and Multiplication: in parallel

| $u_{1}\left\|u_{2}\right\| u_{3}$ | \cdots | u_{ℓ} |
| :--- | :--- | :--- | over the ℓ slots

Batching (1)

- In one ciphertext, encode ℓ plaintexts
- Addition and Multiplication: in parallel over the ℓ slots
- Permutations between the slots (algebraic structure)

Batching (1)

- In one ciphertext, encode ℓ plaintexts
- Addition and Multiplication: in parallel over the ℓ slots

$$
\begin{array}{rlr}
\hline u_{1}\left|u_{2}\right| u_{3} \mid & \cdots & u_{\ell} \\
\hline+v_{1}\left|v_{2}\right| v_{3} \mid & \cdots & \mid v_{\ell} \\
\hline
\end{array}
$$

- Permutations between the slots (algebraic \square structure)

Batching (1)

- In one ciphertext, encode ℓ plaintexts
- Addition and Multiplication: in parallel

| u_{1} | u_{2} | u_{3} | \cdots | u_{ℓ} |
| :--- | :--- | :--- | :--- | :--- | over the ℓ slots

+				
\times	v_{1}	v_{2}	v_{3}	\cdots

- Permutations between the slots (algebraic structure)
- Public element $x_{0}=q_{0} \cdot p$
- Ciphertext of $m \in\{0,1\}$:

$$
c=q \cdot p+2 r+m
$$

Batching (1)

- In one ciphertext, encode ℓ plaintexts
- Addition and Multiplication: in parallel

$u_{1}\left\|u_{2}\right\| u_{3} \mid$	\cdots
$\times$$v_{1}\left\|v_{2}\right\| v_{3} \mid$ \cdots	

- Permutations between the slots (algebraic

| $w_{1} \mid w_{2} w_{3}$ | \cdots |
| :--- | :--- | structure)

- Public element $x_{0}=q_{0} \cdot p$
- Ciphertext of $m \in\{0,1\}$:

$$
c=q \cdot p+2 r+m
$$

$$
-c \bmod p=2 r+m \quad ; \quad c \bmod q_{0}=\underbrace{q}_{\text {uniform in }\left[0, q_{0}\right)} \cdot p+2 r+m \bmod q_{0}
$$

Batching (1)

- In one ciphertext, encode ℓ plaintexts
- Addition and Multiplication: in parallel over the ℓ slots

$u_{1}\left\|u_{2}\right\| u_{3}$	\cdots	u_{ℓ}
	v_{1} v_{2} v_{3}	\cdots

- Permutations between the slots (algebraic \square structure)
- Public element $x_{0}=q_{0} \cdot p$
- Ciphertext of $m \in\{0,1\}$:

$$
c=q \cdot p+2 r+m
$$

$$
\text { - } c \bmod p=2 r+m \quad ; \quad c \bmod q_{0}=\underbrace{q}_{\text {uniform in }\left[0, q_{0}\right)} \cdot p+2 r+m \bmod q_{0}
$$

- We can write

$$
c=\mathrm{CRT}_{q_{0}, p}(d, 2 r+m)
$$

Batching (2): Extend the Chinese Remainder Theorem

$$
c=\mathrm{CR}_{q_{0}, p}(d, 2 r+m)
$$

- Generalization to several slots is easy!
- Ciphertext of $\vec{m}=\left(m_{1}, \ldots, m_{\ell}\right) \in\{0,1\}^{\ell}$:

$$
c=\operatorname{CRT}_{q_{0}, p_{1}, \ldots, p_{\ell}}\left(d, 2 r_{1}+m_{1}, \ldots, 2 r_{\ell}+m_{\ell}\right)
$$

Batching (2): Extend the Chinese Remainder Theorem

$$
c=\mathrm{CR}_{q_{0}, p}(d, 2 r+m)
$$

- Generalization to several slots is easy!
- Ciphertext of $\vec{m}=\left(m_{1}, \ldots, m_{\ell}\right) \in\{0,1\}^{\ell}$:

$$
c=\mathrm{CRT}_{q_{0}, p_{1}, \ldots, p_{\ell}}\left(d, 2 r_{1}+m_{1}, \ldots, 2 r_{\ell}+m_{\ell}\right)
$$

- Decryption:

$$
m_{i}=\left(c \bmod p_{i}\right) \bmod 2
$$

Batching (2): Extend the Chinese Remainder Theorem

$$
c=\mathrm{CRT}_{q_{0}, p}(d, 2 r+m)
$$

- Generalization to several slots is easy!
- Ciphertext of $\vec{m}=\left(m_{1}, \ldots, m_{\ell}\right) \in\{0,1\}^{\ell}$:

$$
c=\mathrm{CRT}_{q_{0}, p_{1}, \ldots, p_{\ell}}\left(d, 2 r_{1}+m_{1}, \ldots, 2 r_{\ell}+m_{\ell}\right)
$$

- Decryption:

$$
m_{i}=\left(c \bmod p_{i}\right) \bmod 2
$$

- Thanks to the structure of the CRT:
- Addition: the addition is performed modulo each p_{i} similarly to DGHV
- Multiplication: the multiplication is performed modulo each p_{i} similarly to DGHV

Security of the Batch Scheme BDGHV

(Error-Free) Decisional Approximate-GCD
Given $x_{0}=q_{0} \cdot p$ and polynomially many $x_{i} \in D=\left\{\boldsymbol{q} \cdot p+r: \boldsymbol{q} \leftarrow\left[0, q_{0}\right), r \leftarrow\left[0,2^{\rho}\right)\right\}$, decide whether z is uniformly generated in $\left[0, x_{0}\right)$ or in D

Security of the Batch Scheme BDGHV

(Error-Free) Decisional Approximate-GCD

Given $x_{0}=q_{0} \cdot p$ and polynomially many $x_{i} \in D=\left\{\boldsymbol{q} \cdot p+r: \boldsymbol{q} \leftarrow\left[0, q_{0}\right), r \leftarrow\left[0,2^{\rho}\right)\right\}$, decide whether z is uniformly generated in $\left[0, x_{0}\right)$ or in D

Sketch:

(Error-Free) ℓ-Decisional Approximate-GCD

Given $x_{0}=q_{0} \cdot p_{1} \cdots p_{\ell}$ and polynomially many $x_{i} \in D_{\ell}=\left\{\operatorname{CRT}_{q_{0}, p_{i}}\left(q, \ldots, r_{i}, \ldots\right): q \leftarrow\left[0, q_{0}\right), r_{i} \leftarrow\left[0,2^{\rho}\right)\right\}$, decide whether z is uniformly generated in $\left[0, x_{0}\right)$ or in D_{ℓ}

Security of the Batch Scheme BDGHV

(Error-Free) Decisional Approximate-GCD

Given $x_{0}=q_{0} \cdot p$ and polynomially many $x_{i} \in D=\left\{\boldsymbol{q} \cdot p+r: \boldsymbol{q} \leftarrow\left[0, q_{0}\right), r \leftarrow\left[0,2^{\rho}\right)\right\}$, decide whether z is uniformly generated in $\left[0, x_{0}\right.$) or in D

Sketch:

(Error-Free) ℓ-Decisional Approximate-GCD

Given $x_{0}=q_{0} \cdot p_{1} \cdots p_{\ell}$ and polynomially many $x_{i} \in D_{\ell}=\left\{\operatorname{CRT}_{q_{0}, p_{i}}\left(q, \ldots, r_{i}, \ldots\right): q \leftarrow\left[0, q_{0}\right), r_{i} \leftarrow\left[0,2^{\rho}\right)\right\}$, decide whether z is uniformly generated in $\left[0, x_{0}\right)$ or in D_{ℓ}

- For $\ell=1$, the above problem is the (Error-Free) Decisional Approximate-GCD

Security of the Batch Scheme BDGHV

(Error-Free) Decisional Approximate-GCD

Given $x_{0}=q_{0} \cdot p$ and polynomially many $x_{i} \in D=\left\{\boldsymbol{q} \cdot p+r: \boldsymbol{q} \leftarrow\left[0, q_{0}\right), r \leftarrow\left[0,2^{\rho}\right)\right\}$, decide whether z is uniformly generated in $\left[0, x_{0}\right)$ or in D

Sketch:

(Error-Free) ℓ-Decisional Approximate-GCD

Given $x_{0}=q_{0} \cdot p_{1} \cdots p_{\ell}$ and polynomially many $x_{i} \in D_{\ell}=\left\{\operatorname{CRT}_{q_{0}, p_{i}}\left(q, \ldots, r_{i}, \ldots\right): q \leftarrow\left[0, q_{0}\right), r_{i} \leftarrow\left[0,2^{\rho}\right)\right\}$, decide whether z is uniformly generated in $\left[0, x_{0}\right)$ or in D_{ℓ}

- For $\ell=1$, the above problem is the (Error-Free) Decisional Approximate-GCD
- Let A be an adversary having adv. ϵ to solve this latter problem

Security of the Batch Scheme BDGHV

(Error-Free) Decisional Approximate-GCD

Given $x_{0}=q_{0} \cdot p$ and polynomially many $x_{i} \in D=\left\{\boldsymbol{q} \cdot p+r: q \leftarrow\left[0, q_{0}\right), r \leftarrow\left[0,2^{\rho}\right)\right\}$, decide whether z is uniformly generated in $\left[0, x_{0}\right)$ or in D

Sketch:

(Error-Free) ℓ-Decisional Approximate-GCD

Given $x_{0}=q_{0} \cdot p_{1} \cdots p_{\ell}$ and polynomially many $x_{i} \in D_{\ell}=\left\{\operatorname{CRT}_{q_{0}, p_{i}}\left(\boldsymbol{q}, \ldots, r_{i}, \ldots\right): q \leftarrow\left[0, q_{0}\right), r_{i} \leftarrow\left[0,2^{\rho}\right)\right\}$, decide whether z is uniformly generated in $\left[0, x_{0}\right)$ or in D_{ℓ}

- For $\ell=1$, the above problem is the (Error-Free) Decisional Approximate-GCD
- Let A be an adversary having adv. ϵ to solve this latter problem
\Rightarrow Denote D_{i} the distribution of elements of the form

$$
\mathrm{CRT}_{q_{0}, p_{1}, \ldots, p_{\ell}}(q, \underbrace{*, \ldots, *}_{\ell-i \mathrm{random}}, r_{i}, \ldots, r_{\ell})
$$

Security of the Batch Scheme BDGHV

(Error-Free) Decisional Approximate-GCD

Given $x_{0}=q_{0} \cdot p$ and polynomially many $x_{i} \in D=\left\{\boldsymbol{q} \cdot p+r: q \leftarrow\left[0, q_{0}\right), r \leftarrow\left[0,2^{\rho}\right)\right\}$, decide whether z is uniformly generated in $\left[0, x_{0}\right)$ or in D

Sketch:

(Error-Free) ℓ-Decisional Approximate-GCD

Given $x_{0}=q_{0} \cdot p_{1} \cdots p_{\ell}$ and polynomially many $x_{i} \in D_{\ell}=\left\{\operatorname{CRT}_{q_{0}, p_{i}}\left(\boldsymbol{q}, \ldots, r_{i}, \ldots\right): q \leftarrow\left[0, q_{0}\right), r_{i} \leftarrow\left[0,2^{\rho}\right)\right\}$, decide whether z is uniformly generated in $\left[0, x_{0}\right)$ or in D_{ℓ}

- For $\ell=1$, the above problem is the (Error-Free) Decisional Approximate-GCD

Let A be an adversary having adv. ϵ to solve this latter problem
\Rightarrow Denote D_{i} the distribution of elements of the form

$$
\mathrm{CRT}_{q_{0}, p_{1}, \ldots, p_{\ell}}(q, \underbrace{*, \ldots, *}_{\ell-i \mathrm{random}}, r_{i}, \ldots, r_{\ell})
$$

- $\exists j_{0}$ s.t. A has advantage $\geq \epsilon / \ell$ to distinguish $D_{j_{0}-1}$ and $D_{j_{0}}$

Security of the Batch Scheme BDGHV

(Error-Free) Decisional Approximate-GCD

Given $x_{0}=q_{0} \cdot p$ and polynomially many $x_{i} \in D=\left\{\boldsymbol{q} \cdot p+r: q \leftarrow\left[0, q_{0}\right), r \leftarrow\left[0,2^{\rho}\right)\right\}$, decide whether z is uniformly generated in $\left[0, x_{0}\right)$ or in D

Sketch:

(Error-Free) ℓ-Decisional Approximate-GCD

Given $x_{0}=q_{0} \cdot p_{1} \cdots p_{\ell}$ and polynomially many $x_{i} \in D_{\ell}=\left\{\operatorname{CRT}_{q_{0}, p_{i}}\left(q, \ldots, r_{i}, \ldots\right): q \leftarrow\left[0, q_{0}\right), r_{i} \leftarrow\left[0,2^{\rho}\right)\right\}$, decide whether z is uniformly generated in $\left[0, x_{0}\right)$ or in D_{ℓ}

- For $\ell=1$, the above problem is the (Error-Free) Decisional Approximate-GCD
- Let A be an adversary having adv. ϵ to solve this latter problem
\Rightarrow Denote D_{i} the distribution of elements of the form

$$
\mathrm{CRT}_{q_{0}, p_{1}, \ldots, p_{\ell}}(q, \underbrace{*, \ldots, *}_{\ell-\text { i random }}, r_{i}, \ldots, r_{\ell})
$$

- $\exists j_{0}$ s.t. A has advantage $\geq \epsilon / \ell$ to distinguish $D_{j_{0}-1}$ and $D_{j_{0}}$
- With proba $1 / \ell$, you can place p at the position j_{0} (generate the $\ell-1$ other p_{i} 's yourself), and you use the challenge z for this slot

Security of the Batch Scheme BDGHV

(Error-Free) Decisional Approximate-GCD
Given $x_{0}=q_{0} \cdot p$ and polynomially many $x_{i} \in D=\left\{\boldsymbol{q} \cdot p+r: \boldsymbol{q} \leftarrow\left[0, q_{0}\right), r \leftarrow\left[0,2^{\rho}\right)\right\}$, decide whether z is uniformly generated in $\left[0, x_{0}\right)$ or in D

Security based on same problem as before!

Advantages of the Batch Variant

- Parallelization:

$u_{1}\left\|u_{2}\right\| u_{3} \mid$...	u_{ℓ}
$\pm \times{ }^{v_{1}\left\|v_{2}\right\| v_{3} \mid}$	\ldots	v_{ℓ}
$w_{1}\left\|w_{2}\right\| w_{3}$	\ldots	w_{ℓ}

- Use the fact that $q \gg p$ to pack elements

- (Also asymptotic reduction of overhead per gate with permutations)

[CCKLLTY13]

With essentially same complexity costs and same security, operations over

$$
\ell \geq 1 \text { bits! }
$$

Mitigating Noise Growth: Scale-Invariance

- Even with batch variant, exponential growth of the noise

Mitigating Noise Growth: Scale-Invariance

- Even with batch variant, exponential growth of the noise

- New technique introduced by Brakerski: scale-invariance
- Instead of encrypting in the LSB of $c \bmod p$, encrypt in the MSB
- Adapted for DGHV [CLT-PKC14]

Contributions to Scale-Invariance

- Design of a new scheme based on Brakerski's idea
- Quantification of the noise growth:

Lemma (simplified) [CLT-PKC14]

Let c_{1} and c_{2} be ciphertexts of m_{1} and m_{2} with noises $\leq 2^{\rho}$. Then

$$
c_{3}=\text { Convert }\left(c_{1} \cdot c_{2}\right)
$$

is a ciphertext of m_{1} AND m_{2} with noise $\leq 2^{\rho+\theta}$ for a fixed $\theta=\mathscr{O}\left(\log _{2} \lambda\right)$

Contributions to Scale-Invariance

- Design of a new scheme based on Brakerski's idea
- Quantification of the noise growth:

Lemma (simplified) [CLT-PKC14]

Let c_{1} and c_{2} be ciphertexts of m_{1} and m_{2} with noises $\leq 2^{\rho}$. Then

$$
c_{3}=\text { Convert }\left(c_{1} \cdot c_{2}\right)
$$

is a ciphertext of m_{1} AND m_{2} with noise $\leq 2^{\rho+\theta}$ for a fixed $\theta=\mathscr{O}\left(\log _{2} \lambda\right)$

- Noise growth is linear in multiplicative depth
- Correctness for multiplicative depth of L :

$$
\log _{2} p=\eta \approx \rho+\theta \cdot L
$$

instead of $\approx 2^{L} \cdot \rho$ of the previous scheme

Fully Homomorphic Encryption Scheme

- Only way to get fully homomorphic encryption: select parameters to evaluate decryption circuit

$$
\begin{aligned}
& \text { Bootstrat } \\
& :(\operatorname{Enc}(m)))=\operatorname{Enc}(m)
\end{aligned}
$$

- select parameters s.t. one can do additional homomorphic operation(s)

Fully Homomorphic Encryption Scheme

- Only way to get fully homomorphic encryption: select parameters to evaluate decryption circuit
- If $c=\operatorname{Enc}(m)$, run homomorphically Dec:

$$
c_{\text {result }}=\operatorname{Enc}(\operatorname{Dec}(c))=\operatorname{Enc}(\operatorname{Dec}(\operatorname{Enc}(m)))=\operatorname{Enc}(m)
$$

- select parameters s.t. one can do additional homomorphic operation(s)
- Adaptation to batch scheme BDGHV in [CCKLLTY-EC13] and to scale-invariant scheme in [CLT-PKC14]

Fully Homomorphic Encryption Scheme

- Only way to get fully homomorphic encryption: select parameters to evaluate decryption circuit
- If $c=\operatorname{Enc}(m)$, run homomorphically Dec:

$$
c_{\text {result }}=\operatorname{Enc}(\operatorname{Dec}(c))=\operatorname{Enc}(\operatorname{Dec}(\operatorname{Enc}(m)))=\operatorname{Enc}(m)
$$

- select parameters s.t. one can do additional homomorphic operation(s)
- Adaptation to batch scheme BDGHV in [CCKLLTY-EC13] and to scale-invariant scheme in [CLT-PKC14]
- for scale-invariant scheme: linear noise growth \Rightarrow bootstrapping not required for many levels

Implementations

- Benchmark on a nontrivial, not astronomical circuit: AES

Implementations

- Benchmark on a nontrivial, not astronomical circuit: AES
- Batch DGHV (with bootstrapping) [CCKLLTY-EC13]

λ	γ	ℓ	Mult	Bootstrapping	AES	Relative time
72	2.9 MB	544	0.68 s	225 s	113 h	768 s
80	-	-	-	-	-	-

Implementations

- Benchmark on a nontrivial, not astronomical circuit: AES
- Batch DGHV (with bootstrapping) [CCKLLTY-EC13]

λ	γ	ℓ	Mult	Bootstrapping	AES	Relative time
72	2.9 MB	544	0.68 s	225 s	113 h	768 s
80	-	-	-	-	-	-

- Scale-Invariant DGHV (without bootstrapping) [CLT-PKC14]

λ	γ	ℓ	Mult	Convert	AES	Relative time
72	2 MB	569	0.1 s	33 s	3.6 h	23 s
80	4.5 MB	1875	0.3 s	277 s	102 h	195 s

Implementations

- Benchmark on a nontrivial, not astronomical circuit: AES
- Batch DGHV (with bootstrapping) [CCKLLTY-EC13]

λ	γ	ℓ	Mult	Bootstrapping	AES	Relative time
72	2.9 MB	544	0.68 s	225 s	113 h	768 s
80	-	-	-	-	-	-

- Scale-Invariant DGHV (without bootstrapping) [CLT-PKC14]

λ	γ	ℓ	Mult	Convert	AES	Relative time
72	2 MB	569	0.1 s	33 s	3.6 h	23 s
80	4.5 MB	1875	0.3 s	277 s	102 h	195 s

- Lattice-Based Scheme [GHS12]

λ	Ciphertext size	ℓ	AES	Relative time
80	0.3 MB	720	65 h	300 s

Future Work

- Assessment of advantages/disadvantages of existing schemes
- Optimizing cloud communications
- Prototypes of real-world applications?
- FHE outside "noisy" framework?

Outline

1. Introduction
2. Fully Homomorphic Encryption
3. Cryptographic Multilinear Maps
4. Conclusion

Starting Point: DDH and Bilinear Maps

- "The DDH assumption is a gold mine" (Boneh, 98)
- Given $\left(g^{a}, g^{b}, z\right)$ hard to decide if $z=g^{a b}$ or random
- We "hide" values $a_{i}{ }^{\prime}$ s in $g^{a_{i}}$
- Easy to compute linear/affine functions + check if $a_{i}=0$ (and constants)
- Hard to compute/check quadratic functions

Starting Point: DDH and Bilinear Maps

- "The DDH assumption is a gold mine" (Boneh, 98)
- Given $\left(g^{a}, g^{b}, z\right)$ hard to decide if $z=g^{a b}$ or random
- We "hide" values $a_{i}{ }^{\prime}$ s in $g^{a_{i}}$
- Easy to compute linear/affine functions + check if $a_{i}=0$ (and constants)
- Hard to compute/check quadratic functions
- Beyond DDH: Bilinear Maps
- Give possibility to compute quadratic functions in the exponent
- but computing cubic is hard...
- Lots of new capabilities

Starting Point: DDH and Bilinear Maps

- "The DDH assumption is a gold mine" (Boneh, 98)
- Given (g^{a}, g^{b}, z) hard to decide if $z=g^{a b}$ or random
- We "hide" values a_{i} 's in $g^{a_{i}}$
- Easy to compute linear/affine functions + check if $a_{i}=0$ (and constants)
- Hard to compute/check quadratic functions
- Beyond DDH: Bilinear Maps
- Give possibility to compute quadratic functions in the exponent
- but computing cubic is hard...
- Lots of new capabilities
- Can we do better multilinear maps?
- i.e. give possibility to compute polynomials up to degree k in the exponents, but no more?
- Considered by [BS03]: very fruitful, but unlikely to be constructed similarly to bilinear maps

MMaps vs. HE

- Wanted: add and multiply (bounded \# times) encodings... \Rightarrow looks like HE

Multilinear Maps	Homomorphic Encryption
Encoding $e_{a}=g^{a}$	Encrypting $c_{a}=\operatorname{Enc}(a)$
Computing low-degree polynomials of the e_{a} 's is easy	Computing low-degree polynomials of the c_{a} 's is easy
Can test if encoding of 0	Cannot test anything... \ldots unless you know the secret key sk

MMaps vs. HE

- Wanted: add and multiply (bounded \# times) encodings... \Rightarrow looks like HE

Multilinear Maps	Homomorphic Encryption
Encoding $e_{a}=g^{a}$	Encrypting $c_{a}=\operatorname{Enc}(a)$
Computing low-degree polynomials of the e_{a} 's is easy	Computing low-degree polynomials of the c_{a} 's is easy
Can test if encoding of 0	Cannot test anything... \ldots unless you know the secret key sk

Can we modify the existing HE schemes to get MMaps?

MMaps vs. HE

- Wanted: add and multiply (bounded \# times) encodings... \Rightarrow looks like HE

Multilinear Maps	Homomorphic Encryption
Encoding $e_{a}=g^{a}$	Encrypting $c_{a}=\operatorname{Enc}(a)$
Computing low-degree polynomials of the e_{a}^{\prime} 's is easy	Computing low-degree polynomials of the c_{a} 's is easy
Can test if encoding of 0	Cannot test anything... \ldots unless you know the secret key sk

Can we modify the existing HE schemes to get MMaps?

- First construction of approximate MMaps: Garg, Gentry, Halevi in 2013

Our Contributions [CLT-C13]

1. Start from (B)DGHV and transform it into approximate MMaps!

- Only 1 other known construction of MMaps: the initial one
- All $(\kappa+1)$-degree functions seem hard
- Some attacks in the original scheme have no equivalent here

2. Optimizations and (first!) implementation

- Open-Source implementation of multilinear maps (Github)
- Implementation of a 26-partite Diffie-Hellman Key Exchange

MMaps from DGHV?

Ciphertext of $m \in\{0, \ldots, g-1\}$ using DGHV:

$$
c=\mathrm{CRT}_{q_{0}, p}(q, g \cdot r+m)
$$

- Problem: q was used as a mask to hide everything
- But we need a deterministic extraction procedure to construct protocols
- seems hard to cancel a large random
- If we remove it, no more encryption... $c=g \cdot r+m \in \mathbf{Z}$!

MMaps from DGHV?

Ciphertext of $m \in\{0, \ldots, g-1\}$ using DGHV:

$$
c=\mathrm{CRT}_{q_{0}, p}(q, g \cdot r+m)
$$

- Problem: q was used as a mask to hide everything
- But we need a deterministic extraction procedure to construct protocols
- seems hard to cancel a large random
- If we remove it, no more encryption... $c=g \cdot r+m \in \mathbf{Z}$!
- Let us consider Batch DGHV instead!

From Batch DGHV to MMaps (1)

Ciphertext of $\vec{m} \in\{0, \ldots, g-1\}^{\ell}$ using BDGHV:

$$
c=\operatorname{CRT}_{q_{0}, p_{1}, \ldots, p_{\ell}}\left(q, g \cdot r_{1}+m_{1}, \ldots, g \cdot r_{\ell}+m_{\ell}\right)
$$

- Problem \#1: (Again) q was used as a mask to hide everything

From Batch DGHV to MMaps (1)

Ciphertext of $\vec{m} \in\{0, \ldots, g-1\}^{\ell}$ using BDGHV without mask:

$$
c=\operatorname{CRT}_{p_{1}, \ldots, p_{\ell}}\left(g \cdot r_{1}+m_{1}, \ldots, g \cdot r_{\ell}+m_{\ell}\right)
$$

- Problem \#1: (Again) q was used as a mask to hide everything
- Let us remove it!
- Seems less secure (does not rely on Approximate-GCD anymore)? How can we exploit that?

From Batch DGHV to MMaps (1)

Ciphertext of $\vec{m} \in\{0, \ldots, g-1\}^{\ell}$ using BDGHV without mask:

$$
c=\operatorname{CRT}_{p_{1}, \ldots, p_{\ell}}\left(g \cdot r_{1}+m_{1}, \ldots, g \cdot r_{\ell}+m_{\ell}\right)
$$

- Problem \#1: (Again) q was used as a mask to hide everything
- Let us remove it!
- Seems less secure (does not rely on Approximate-GCD anymore)? How can we exploit that?
- Problem \#2: We don't know the p_{i} 's, how can we sample?

From Batch DGHV to MMaps (1)

Encoding of a random $\vec{m} \in\{0, \ldots, g-1\}^{\ell}$:

$$
c=\mathrm{CRT}_{p_{1}, \ldots, p_{\ell}}\left(g \cdot r_{1}+m_{1}, \ldots, g \cdot r_{\ell}+m_{\ell}\right)=\sum_{i \in S} x_{i}
$$

- Problem \#1: (Again) q was used as a mask to hide everything
- Let us remove it!
- Seems less secure (does not rely on Approximate-GCD anymore)? How can we exploit that?
- Problem \#2: We don't know the p_{i} 's, how can we sample?
- Define random encodings x_{i} 's, and compute a subset sum of them
- We don't know anymore what is the value of \vec{m}, but we don't often need it in protocols

From Batch DGHV to MMaps (1)

Encoding of a random $\vec{m} \in\{0, \ldots, g-1\}^{\ell}$:

$$
c=\mathrm{CRT}_{p_{1}, \ldots, p_{\ell}}\left(g \cdot r_{1}+m_{1}, \ldots, g \cdot r_{\ell}+m_{\ell}\right)=\sum_{i \in S} x_{i}
$$

- Problem \#1: (Again) q was used as a mask to hide everything
- Let us remove it!
- Seems less secure (does not rely on Approximate-GCD anymore)? How can we exploit that?
- Problem \#2: We don't know the p_{i} 's, how can we sample?
- Define random encodings x_{i} 's, and compute a subset sum of them
- We don't know anymore what is the value of \vec{m}, but we don't often need it in protocols
- Problem \#3: Fuzzy threshold for easy vs. hard?
- Because we don't know exactly how the noise increases

From Batch DGHV to MMaps (1)

Encoding of a random $\vec{m} \in\{0, \ldots, g-1\}^{\ell}$:

$$
c=\frac{\mathrm{CRT}_{p_{1}, \ldots, p_{\ell}}\left(g \cdot r_{1}+m_{1}, \ldots, g \cdot r_{\ell}+m_{\ell}\right)}{z}=\sum_{i \in S} x_{i}^{\prime}
$$

- Problem \#1: (Again) q was used as a mask to hide everything
- Let us remove it!
- Seems less secure (does not rely on Approximate-GCD anymore)? How can we exploit that?
- Problem \#2: We don't know the p_{i} 's, how can we sample?
- Define random encodings x_{i} 's, and compute a subset sum of them
- We don't know anymore what is the value of \vec{m}, but we don't often need it in protocols
- Problem \#3: Fuzzy threshold for easy vs. hard?
- Because we don't know exactly how the noise increases
- Use a secret mask z with $x_{i}^{\prime}=x_{i} / z$!

From Batch DGHV to MMaps (2)

$$
c=\frac{\mathrm{CRT}_{p_{1}, \ldots, p_{\ell}}\left(g \cdot r_{1}+m_{1}, \ldots, g \cdot r_{\ell}+m_{\ell}\right)}{z}=\sum_{i \in S} x_{i}^{\prime}
$$

- Multiplication of encodings with masks z^{i} (i.e. level- i) and z^{j} (i.e. level- j) \Rightarrow encoding with mask z^{i+j} (i.e. level- $(i+j)$)

From Batch DGHV to MMaps (2)

$$
c=\frac{\mathrm{CRT}_{p_{1}, \ldots, p_{\ell}}\left(g \cdot r_{1}+m_{1}, \ldots, g \cdot r_{\ell}+m_{\ell}\right)}{z}=\sum_{i \in S} x_{i}^{\prime}
$$

- Multiplication of encodings with masks z^{i} (i.e. level- i) and z^{j} (i.e. level- j) \Rightarrow encoding with mask z^{i+j} (i.e. level- $(i+j)$)
- Zero-test procedure: does a level- κ encoding encodes $\overrightarrow{0}$?

From Batch DGHV to MMaps (2)

$$
c=\frac{\mathrm{CRT}_{p_{1}, \ldots, p_{\ell}}\left(g \cdot r_{1}+m_{1}, \ldots, g \cdot r_{\ell}+m_{\ell}\right)}{z}=\sum_{i \in S} x_{i}^{\prime}
$$

- Multiplication of encodings with masks z^{i} (i.e. level- i) and z^{j} (i.e. level- j) \Rightarrow encoding with mask z^{i+j} (i.e. level- $(i+j)$)
- Zero-test procedure: does a level- κ encoding encodes $\overrightarrow{0}$?
- Need to cancel z^{κ} but cannot reveal z !
- Define

$$
p_{z t}=\sum_{i=1}^{\ell} h_{i} \cdot\left(z^{K} \cdot g^{-1} \bmod p_{i}\right) \cdot \prod_{j \neq i} p_{j}
$$

From Batch DGHV to MMaps (2)

$$
c=\frac{\mathrm{CRT}_{p_{1}, \ldots, p_{\ell}}\left(g \cdot r_{1}+m_{1}, \ldots, g \cdot r_{\ell}+m_{\ell}\right)}{z}=\sum_{i \in S} x_{i}^{\prime}
$$

- Multiplication of encodings with masks z^{i} (i.e. level- i) and z^{j} (i.e. level- j) \Rightarrow encoding with mask z^{i+j} (i.e. level- $\left.(i+j)\right)$
- Zero-test procedure: does a level- κ encoding encodes $\overrightarrow{0}$?
- Need to cancel z^{k} but cannot reveal z !
- Define

$$
p_{z t}=\sum_{i=1}^{\ell} h_{i} \cdot\left(z^{K} \cdot g^{-1} \bmod p_{i}\right) \cdot \prod_{j \neq i} p_{j}
$$

- Compute $\omega=c \cdot p_{z t} \bmod x_{0}$

$$
\text { isZero }(\omega)= \begin{cases}1 & \text { if } \omega \ll x_{0} \\ 0 & \text { otherwise }\end{cases}
$$

Zero Test

$$
c=\frac{\mathrm{CRT}_{p_{1}, \ldots, p_{\ell}}\left(g \cdot r_{1}+m_{1}, \ldots, g \cdot r_{\ell}+m_{\ell}\right)}{z}=\sum_{i \in S} x_{i}^{\prime}
$$

and

$$
p_{z t}=\sum_{i=1}^{\ell} h_{i} \cdot\left(z^{\kappa} \cdot g^{-1} \bmod p_{i}\right) \cdot \prod_{j \neq i} p_{j}
$$

- If c encodes $\overrightarrow{0}$, we have

$$
c \cdot p_{z t} \bmod x_{0}=\sum_{i=1}^{\ell} h_{i} r_{i} \cdot \prod_{j \neq i} p_{j} \ll x_{0}=\prod_{i=1, \ldots, n} p_{i}
$$

- If c encodes $\vec{m} \neq \overrightarrow{0}$, we have

$$
c \cdot p_{z t} \bmod x_{0}=\sum_{i=1}^{\ell} h_{i}\left(r_{i}+m_{i} \cdot g^{-1} \bmod p_{i}\right) \cdot \prod_{j \neq i} p_{j} \approx x_{0}
$$

Zero Test

$$
c=\frac{\mathrm{CRT}_{p_{1}, \ldots, p_{\ell}}\left(g_{1} \cdot r_{1}+m_{1}, \ldots, g_{\ell} \cdot r_{\ell}+m_{\ell}\right)}{z}=\sum_{i \in S} x_{i}^{\prime}
$$

and

$$
p_{z t}=\sum_{i=1}^{\ell} h_{i} \cdot\left(z^{\kappa} \cdot g_{i}^{-1} \bmod p_{i}\right) \cdot \prod_{j \neq i} p_{j}
$$

- If c encodes $\overrightarrow{0}$, we have

$$
c \cdot p_{z t} \bmod x_{0}=\sum_{i=1}^{\ell} h_{i} r_{i} \cdot \prod_{j \neq i} p_{j} \ll x_{0}=\prod_{i=1, \ldots, n} p_{i}
$$

- If c encodes $\vec{m} \neq \overrightarrow{0}$, we har Actually we need distinct g_{i} 's to avoid another attack

$$
c \cdot p_{z t} \bmod x_{0}=\sum_{i=1}^{\ell} h_{i}\left(r_{i}+m_{i} \cdot g_{i}^{-1} \bmod p_{i}\right) \cdot \prod_{j \neq i} p_{j} \approx x_{0}
$$

Implementation: 26-partite Key Exchange

- Implementation of a 26-partite one-round Diffie-Hellman key exchange
- Public parameters of multilinear maps for $\kappa=25$ levels

Implementation: 26-partite Key Exchange

- Implementation of a 26-partite one-round Diffie-Hellman key exchange
- Public parameters of multilinear maps for $\kappa=25$ levels

Implementation: 26-partite Key Exchange

- Implementation of a 26-partite one-round Diffie-Hellman key exchange
- Public parameters of multilinear maps for $\kappa=25$ levels

Implementation: 26-partite Key Exchange

- Implementation of a 26-partite one-round Diffie-Hellman key exchange
- Public parameters of multilinear maps for $\kappa=25$ levels

Future Work

- Explosion of multilinear maps in cryptography (and of obfuscation, built on multilinear maps)
- Improve the practicality of multilinear maps
- akin to what has been done for FHE, and beyond
- Applications with reasonable number of multilinearity level
- Cryptanalysis to build confidence in the multilinear maps proposals

Outline

1. Introduction
2. Fully Homomorphic Encryption
3. Cryptographic Multilinear Maps
4. Conclusion

Contributions to Fully Homomorphic Encryption

On the Minimal Number of Bootstrappings in Homomorphic Circuits.
L., Paillier
[WAHC 2013]
Batch Fully Homomorphic Encryption over the Integers.
Cheon, Coron, Kim, Lee, L., Tibouchi, Yun [EUROCRYPT 2013]
Scale-Invariant Fully Homomorphic Encryption over the Integers. Coron, L., Tibouchi
[PKC 2014]
A Comparison of the Homomorphic Encryption Schemes FV and YASHE.
L., Naehrig
[AFRICACRYPT 2014]
Implementation: https://github.com/tlepoint/homomorphic-simon

Contributions to Multilinear Maps

Practical Multilinear Maps over the Integers.
Coron, L., Tibouchi
[CRYPTO 2013]
Implementation: https://github.com/tlepoint/multimap

Other Areas

- Lattice-Based Signature

Lattice Signatures and Bimodal Gaussians.
Ducas, Durmus, L., Lyubashevsky
[CRYPTO 2013]

- White-Box Cryptography

Two Attacks on a White-Box AES Implementation.
L., Rivain, De Mulder, Roelse, Preneel
[SAC 2013]

White-Box Security Notions for Symmetric Encryption Schemes.
Delerablée, L., Paillier, Rivain
[SAC 2013]

NO RAM LEFT ON THE COMPUTER

 (generation of public parameters)6132
6138
6143 lepoint
6135 lepoint
6137 lepoint
6145 lepoint
6259 lepoint
1838 root
1904 root
1800 ntp
1585 snmp
1172 daemon
2023 root

20	0	363 G	363
20	0	363 G	363
20	0	363 G	363
20	0	363 G	363
20	0	20008	178
20	0	205 M	8216
20	0	205 M	8216
20	0	21600	138
20	0	47704	4948
20	0	8272	644
20	0	130 M	463

 \(\begin{array}{llll}1484 & R & 99.0 & 96.0 \\ \text { 2h41:41 ./multimap24 } \\ 1484 & \mathrm{R} & 99.0 & 96.0 \\ \text { 2h44:50 }\end{array}\)
 \(\begin{array}{llll}1484 & \mathrm{R} & 99.0 & 96.0 \\ 1484 \mathrm{R} & 2 \mathrm{~h} 41: 41 \text {./multimap24 } \\ 148.0 & 96.0 & 2 \mathrm{~h} 44: 50 \text {./multimap24 }\end{array}\)
 \(\begin{array}{llll}\text { BGG } & 1484 \mathrm{R} & 99.0 & 96.0 \\ \text { 2h } 44: 50 & \text {./multimap24 } \\ \text { SGG } & 1484 \mathrm{R} & 99.0 & 96.0 \\ 2 h 44: 41 & \text {./multimap24 }\end{array}\)
 363G 1484 R 99.0 96.0 2h40:32 ./multimap24
 \(\begin{array}{lllll}1784 & 1236 & R & 1.0 & 0.0 \\ 3: 43.71 & \text { htop }\end{array}\)
 3856 S \(0.00 .0 \quad 0: 53.39\) /opt/dell/srvadmin/sbin/dsm_sa_datamgrd
 3856 S \(0.0 \quad 0.0 \quad 0: 33.73\) /opt/dell/srvadmin/sbin/dsm_sa_datamgrd
 960 S 0.0 0.0 0:05.96/usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 106:114
 2180 S 0.0 0.0 0 3:14.83 /usr/sbin/snmpd -Lsd -Lf /dev/null -u snmp -g snmp -I -smux -p /var/run/snmpd
 \(\begin{array}{llllllll}20 & 0 & 8272 & 644 & 504 & \mathrm{~S} & 0.0 & 0.0 \\ 0.03 .07 & \text { portmap }\end{array}\)
 root $20 \quad 0 \quad 130 \mathrm{M} \quad 4632 \quad 2852 \mathrm{~S} \quad 0.0 \quad 0.0 \quad 0: 10.07$ /opt/dell/srvadmin/sbin/dsm_sa_snmpd
F1Help F2Setup F3SearchF4FilterF5Tree F6SortByF7Nice -F8Nice +F9Kill F10Quit

$\rightarrow 9 C$

